Abstract
Objective
Teaching spinal manipulation (SM) is a fundamental aspect of chiropractic training.
Recent works have identified various biomechanical variables as indicators of SM performance
and learning. However, only data from cross-sectional studies are available, limiting
conclusions regarding the persistence of SM performance over the years. Therefore,
the main objective of this investigation was to quantify the evolution of biomechanical
parameters of SM over a 5-year learning period.
Methods
Thirty-three students enrolled in a chiropractic program participated in the present
study. They were tested each year at the beginning of each fall semester by performing
10 SMs on an instrumented manikin while standing on a force plate. The procedure allowed
us to measure various force-time parameters.
Results
Overall, significant time effects were noted for most dependent variables. The results
indicated rapid improvement in the peak force applied and the rate of force production
during the first 2 years. Time to peak force decreased drastically during the first
year, whereas preload forces reached satisfactory levels during the third year. When
various force-time requirements of bimanual task components were met, learners significantly
reduced trial-to-trial variability of SM peak and preload forces, indicating automaticity
of performance. Although global coordination improved in all learning processes, it
was only in the later phase that learners reached values approaching those of experts.
Conclusion
Overall, these results highlighted the importance of considering learning principles
in the development of didactic strategies related to SM motor skills.
Key Indexing Terms
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Manipulative & Physiological TherapeuticsAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Chiropractic in North America: a descriptive analysis.J Manipulative Physiol Ther. 2005; 28: 83-89
- Chiropractic technique.2nd ed. Mosby, St. Louis, Mo2002
- The mechanics of spinal manipulation.in: Herzog W Clinical biomechanics of spinal manipulation. Churchill Livingstone, New York2000: 92-190
- Effects of visual feedback on manipulation performance and patient ratings.J Manipulative Physiol Ther. 2006; 29: 378-385
- Kinetic analysis of expertise in spinal manipulative therapy using an instrumented manikin.J Chiropr Med. 2005; 4: 53-60
- Biomechanical performance of spinal manipulation therapy by newly trained vs. practicing providers: does experience transfer to unfamiliar procedures?.J Manipulative Physiol Ther. 1995; 18: 347-352
- Learning spinal manipulation: the importance of augmented feedback relating to various kinetic parameters.Spine J. 2006; 6: 138-145
- Three-dimensionality of contact forces during clinical manual examination and treatment: a new measuring system.Clin Biomech (Bristol, Avon). 2002; 17: 719-722
- Loads transmitted during lumbosacral spinal manipulative therapy.Spine (Phila Pa 1976). 1997; 22: 1955-1964
- The effective forces transmitted by high-speed, low-amplitude thoracic manipulation.Spine (Phila Pa 1976). 2001; 26 (discussion 2110-2101): 2105-2110
- Guidance hypothesis with verbal feedback in learning a palpation skill.J Manipulative Physiol Ther. 2004; 27: 36-42
- Developing skilled performance of lumbar spine manipulation.J Manipulative Physiol Ther. 2002; 25: 353-361
- The effects of augmented sensory feedback precision on the acquisition and retention of a simulated chiropractic task.J Manipulative Physiol Ther. 2002; 25: 34-41
- Quantitative feedback versus standard training for cervical and thoracic manipulation.J Manipulative Physiol Ther. 2003; 26: 131-138
- Forces exerted during spinal manipulative therapy.Spine. 1993; 18: 1206-1212
- Trajectory control in targeted force impulses. II. Pulse height control.Exp Brain Res. 1987; 67: 241-252
- Motor learning: changes in the structure of variability in a redundant task.Adv Exp Med Biol. 2009; 629: 439-456
- Motor learning and prediction in a variable environment.Curr Opin Neurobiol. 2003; 13: 232-237
- Attentional focus in complex skill learning.Res Q Exerc Sport. 2000; 71: 229-239
- Motor control and learning : a behavioral emphasis.3rd ed. Human Kinetics, Champaign (Ill)1999
- Historical review and appraisal of research on the learning, retention, and transfer of human motor skills.Psychol Bull. 1987; 101: 41-74
- Skill acquisition in sport : research, theory and practice.Routledge, New York2004
Article info
Publication history
Accepted:
December 9,
2009
Received in revised form:
November 27,
2009
Received:
September 25,
2009
Identification
Copyright
© 2010 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.