Changes in Shoulder Pain and Disability After Thrust Manipulation in Subjects Presenting With Second and Third Rib Syndrome

James Dunning, DPT, MSc, a Firas Mourad, PT, OMT, Cert. SMT, b Giuseppe Giovannico, PT, MSc, OMT, c Filippo Maselli, PT, MSc, OMT, d Thomas Perreault, DPT, Cert. SMT, Cert. DN, e and César Fernández-de-las-Peñas, PT, DO, PhD, DMSc f

Abstract

Objective: The purpose of this preliminary study was to investigate changes in shoulder pain, disability, and perceived level of recovery after 2 sessions of upper thoracic and upper rib high-velocity low-amplitude (HVLA) thrust manipulation in patients with shoulder pain secondary to second and third rib syndrome.

Methods: This exploratory study evaluated 10 consecutive individuals with shoulder pain, with or without brachial pain, and a negative Neer impingement test, who completed the Shoulder Pain and Disability Index (SPADI), the numeric pain rating scale (NPRS), and the global rating of change. Patients received 2 sessions of HVLA thrust manipulation targeting the upper thoracic spine bilaterally and the second and third ribs on the symptomatic side. Outcome measures were completed after the first treatment session, at 48 hours, 1 month, and 3 months.

Results: Patients showed a significant decrease in SPADI ($F = 59.997; P = .001$) and significant decrease in resting shoulder NPRS ($F = 63.439; P = .001$). For both NPRS and SPADI, there were significant differences between the pretreatment scores and each of the postintervention scores through 3-month follow-up ($P < .05$). Large within-group effect sizes (Cohen’s $d \geq 0.8$) were found between preintervention data and all postintervention assessments in both outcomes. Mean global rating of change scores (+6.8 at 3 months) indicated “a very great deal better” outcome at long-term follow-up.

Conclusion: This group of patients with shoulder pain secondary to second and third rib syndrome who received upper thoracic and upper rib HVLA thrust manipulations showed significant reductions in pain and disability and improvement in perceived level of recovery. (J Manipulative Physiol Ther 2015;38:382-394)

Key Indexing Terms: Shoulder Pain; Manipulation; Spinal; Manual Therapy; Thoracic Vertebrae; Ribs

Only 50% of all new episodes of shoulder pain conditions resolve within 6 months, whereas at 12 months, more than 40% of the individuals are still disabled during work and leisure activities.1,2 Although infrequently reported,3-13 dysfunction of the cervicothoracic vertebrae6,10-24 and/or upper ribs7,10,13,20,25-29 has been suggested as a causative factor in patients presenting with shoulder and arm pain.10-13 Dysfunction of the

a PhD Student, College of Health Care Sciences, Nova Southeastern University, Ft. Lauderdale, FL.

b PhD Student, Department of Physical Therapy, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.
c Lecturer, Department of Physiotherapy, Università di Padova, Padova, Italy.
d Lecturer, Department of Physiotherapy, Università di Genova, Genova, Italy.
e Senior Physical Therapist, Portsmouth Physical Therapy, Portsmouth, NH.
f Professor, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.

Submit requests for reprints to: James Dunning, DPT, MSc, FAAOMP, 1036 Old Breckenridge Ln, Montgomery, AL 36117.
(e-mail: jamesdunning@hotmail.com).

Paper submitted June 2, 2014; in revised form March 26, 2015; accepted April 30, 2015.

0161-4754
Copyright © 2015 by National University of Health Sciences.
Open access under CC BY-NC-ND license.
http://dx.doi.org/10.1016/j.jmpt.2015.06.008
cervicothoracic spine and/or adjacent ribs (ie, the shoulder-girdle) triples the risk \(^3^0\) for the development of shoulder pain and also appears to predict poor outcome in shoulder disorders. \(^1^1,3^0,3^1\)

In 1988, Grieve \(^3^2\) appears to have been one of the first to publish the name “second rib syndrome”; however, he refrained from providing any specifics on the actual clinical presentation, pain pattern, or neuroanatomy of the disorder. In 1999, Boyle \(^2^5\) published a case report of 2 patients with “second rib syndrome.” Furthermore, Boyle proposed, “a sprain or subluxation/displacement of the second rib spinal articulations in isolation, either acutely or chronically induced, is a cause of shoulder pain that is commonly misdiagnosed as shoulder impingement syndrome and/or rotator cuff muscle partial tear.” \(^2^5\) Notably, Boyle stated that second rib syndrome “may be a relatively common clinical presentation.” \(^2^5\)

In a prospective single-arm trial of 21 patients with a primary complaint of unilateral shoulder pain, Strunce et al \(^7\) found cervicothoracic junction restrictions, upper thoracic restrictions, and unilateral rib restrictions in 71%, 100%, and 79% of patients with shoulder pain, respectively. Similarly, after examining 101 patients with shoulder pain and 75 healthy controls, Sobel et al \(^1^2\) reported, “palpation of the second and third ribs were found to be painful significantly more often and the mobility of the cervicothoracic spine was found to be limited significantly more often” in patients with shoulder pain compared to asymptomatic controls.

In 28 of 32 patients with radiographically confirmed restrictions of mobility of the first rib with the inhale or exhale position, Jirout \(^3^3\) detected rotational hypomobility and twisting of the C7 and T1 vertebrae. Jirout \(^3^3\) concluded that hypomobility or positional faults of upper thoracic vertebrae affects the mobility, function, and position of the respective rib—that is, causes the rib on the side toward which the vertebral rotation occurs to elevate. \(^1^1,3^3\) Moreover, restrictions of mobility and rotational positional faults in cervicothoracic vertebrae can cause restrictions of mobility in the scapulohumeral joint through restrictions of the upper ribs. \(^1^1,1^2,3^3,3^4\)

The neuroanatomical rationale for the complaint of shoulder girdle and/or upper arm pain is thought to be an “anterior and superior subluxation or sprain of the second rib in isolation.” \(^2^5\) that subsequently entraps or irritates the dorsal ramus of the second thoracic nerve as it passes through a vertical opening limited caudally by the rib and laterally by the superior costotransverse ligament. \(^3^5\) Furthermore, the dorsal ramus of the second thoracic nerve provides the cutaneous distribution to the posterolateral shoulder. \(^2^5,3^0\)

A recent randomized and sham-controlled trial \(^4^1\) reported reductions in shoulder pain after midthoracic high-velocity low-amplitude (HVLA) thrust manipulation in individuals with shoulder impingement syndrome; however, the between-group difference was not statistically significant, the within-group change scores did not exceed the minimum clinically important difference (MCID) or the minimum detectable change for the numeric pain rating scale (NPRS), and the longest outcome measure was taken just 3 minutes after the treatment. Nevertheless, 3 prospective single-arm trials \(^6,7,2^3\) and 3 randomized-controlled trials \(^1^0,1^3,2^4,4^2\) have previously demonstrated the effectiveness of nonthrust mobilization and/or HVLA thrust manipulation to the cervicothoracic spine, upper thoracic spine, and upper ribs in patients with shoulder impingement syndrome and/or shoulder girdle disorder.

However, to date and to our knowledge, only 1 case report \(^2^5\) involving 2 patients has been published in the peer-reviewed literature that has directly named second rib syndrome as the primary cause or underlying pain generator in patients presenting with shoulder pain. In addition, no study to date has targeted exclusively the upper thoracic (T2-T3) spine and the second and third ribs with HVLA thrust manipulation for the management of patients with shoulder pain. Therefore, the purpose of this study was to investigate changes in shoulder pain, disability, and perceived level of recovery after upper thoracic and upper rib HVLA thrust manipulation in patients with shoulder pain of any duration secondary to second and third rib syndrome.

METHODS

Subjects

We recruited 10 consecutive patients (5 males and 5 females) with nonmidline, posterolateral upper thoracic, and unilateral posterior shoulder girdle pain with or without posterolateral upper brachial pain, who presented to 1 of 3 private physical therapy outpatient clinics in Italy (Brescia, Lecce, and Bari) between December 2012 and January 2014. Their ages ranged from 18 to 61 years with a mean (SD) of 33.6 (13.4) years. Height ranged from 158 to 185 cm with a mean (SD) of 170.0 (9.5) cm. Weight was 50.1 to 83.0 kg with a mean (SD) of 69.6 (10.7) kg. The duration of symptoms ranged from 1 and 270 days with a mean (SD) of 67.3 (89.3) days. Baseline characteristics of the 10 patients in this case series can be found in Table 1. This study was approved by the Ethics Committee of Universidad Rey Juan Carlos (URJC 12-1065), and all patients provided informed consent before their participation in the study.

To be eligible for inclusion, patients had to (1) exhibit a primary complaint of unilateral, posterior “shoulder girdle” pain \(^1^2,2^4\)—that is, “pain between the neck and the elbow at rest or during movement of the upper arm” \(^1^0\)—with or without brachial pain of any duration; (2) demonstrate findings on physical examination linking “shoulder pain with dysfunction of the cervicothoracic spine and the adjacent ribs” \(^1^0\); (3) be between 18 and 70 years of age;
Data are expressed as mean (SD) except for sex.

Table 1. Baseline Variables: Demographics and Outcome Measures

<table>
<thead>
<tr>
<th>Baseline Variable</th>
<th>Patients With Rib 2-3 Syndrome (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>33.6 (13.4)</td>
</tr>
<tr>
<td>Sex: male, n (%)</td>
<td>5 (50%)</td>
</tr>
<tr>
<td>Duration of symptoms (d)</td>
<td>67.3 (89.3)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.1 (3.4)</td>
</tr>
<tr>
<td>NPRS (0-10)</td>
<td>6.5 (1.8)</td>
</tr>
<tr>
<td>SPADI (0-100)</td>
<td>50.3 (17.9)</td>
</tr>
</tbody>
</table>

Data are expressed as mean (SD) except for sex.

BMI, Body Mass Index in kg/m²; NPRS, Numeric Pain Rating Scale, 0–10; lower scores indicate less pain; SPADI, Shoulder Pain and Disability Index, 0–100, lower scores indicate greater function.

(4) have an NPRS score of 2 or greater (on a 0-to-10 scale) at rest; (5) have a baseline Shoulder Pain And Disability Index (SPADI) score of 20% or greater23 (on a 0-to-100 scale); (6) have a negative Neer impingement test23; and (7) have familiar pain recognition during firm manual posterior-to-anterior palpation over the second and/or third ribs25 lateral to the transverse processes but medial to the vertebral border of the scapula.

A negative Neer impingement test was used as one of the inclusion criteria because it has been found to be sensitive but not specific for shoulder impingement syndrome43,44; thus, the Neer impingement test appears to be a useful screening test for ruling out synovial disorders of the glenohumeral, subacromial, and coracoacromial articulations. Furthermore, a negative Neer impingement test was recently found by Mintken et al23 to be 1 of 5 prognostic variables in predicting success in individuals with shoulder pain after HVLA thrust manipulation targeted to the cervicothoracic, upper, and middle thoracic spines.

Patients were excluded if they (1) exhibited any contraindications to manipulative therapy; (2) had red flags (ie, tumor, metabolic diseases, osteoporosis, resting blood pressure greater than 140/90 mm Hg, prolonged history of steroid use, etc); (3) presented with 2 or more positive neurologic signs consistent with a herniated cervical disc and/or nerve root compression (muscle weakness involving a major muscle group of the upper extremity, diminished upper extremity deep tendon reflex, or diminished or absent sensation to pinprick in any upper extremity dermatome); (4) presented with specific rheumatic disorders (polymyalgia rheumatica, rheumatoid arthritis, systemic lupus erythematosus, and fibromyalgia); (5) presented with a diagnosis of cervical spinal stenosis; (6) exhibited bilateral upper extremity symptoms; (7) had evidence of central nervous system involvement (hyperreflexia, sensory disturbances in the hand, intrinsic muscle wasting of the hands, unsteadiness during walking, nystagmus, loss of visual acuity, impaired sensation of the face, altered taste, and presence of pathologic reflexes); (8) had a shoulder disorder due to general internal disease of the thoracic or abdominal organs; (9) had physical examination findings consistent with adhesive capsulitis (ie, active and passive physiologic motion limitations in multiple planes with a capsular pattern); (10) had received a cortisone injection or other fluid injection into the shoulder joint within the last 30 days; (11) had a history of whiplash injury within the previous 6 weeks; (12) had a history of fracture, dislocation, or rotator cuff rupture; (13) had prior surgery to the neck, thoracic spine, or shoulder; (14) had received treatment for neck or shoulder pain from any practitioner within the previous month; (15) had a history of dementia or other psychiatric disorder; or (16) had pending legal action regarding their shoulder pain.

Treatting Practitioners

Three manipulative physiotherapists performed all of the HVLA thrust manipulations to the upper thoracic and upper rib articulations on all study participants. At the time of data collection, each of the physiotherapists had completed a postgraduate Master’s degree in orthopedic manipulative therapy, had worked in clinical practice for greater than 3 years, and routinely used HVLA thrust manipulation in daily clinical practice. To ensure that all examination, treatment, and outcome procedures were standardized, all therapists were required to study a manual of standard operating procedures and to participate in two 15-hour training sessions.

Examination Procedures

Demographic information and clinical history including age; weight; height; sex; medical history; and the location, nature, and duration of symptoms were collected. This was followed by a physical examination that included, but was not limited to, the following testing procedures. The cervical spine was examined by administering active and passive range of motion testing in all 6 planes, the cervical lateral glide test, the quadrant test, the median nerve upper limb neurodynamic test, and upper limb neurologic testing (reflexes, sensation, and muscle strength representing C5-T1). Screening for periscapular myofascial trigger points was conducted using manual palpation to assess whether myofascial trigger points were a contributing factor to the patient’s reported shoulder girdle and/or upper arm pain; however, the presence of myofascial trigger points alone was not used to disqualify inclusion in the study if familiar pain recognition also occurred during firm manual posterior-to-anterior palpation over the second and/or third ribs lateral to the transverse processes but medial to the vertebral border of the scapula.25 The following special tests for screening of subacromial and/or coracoacromial shoulder impingement45 were administered on each subject: the Full and Empty Can test,46,47 the Hawkins-Kennedy test,48 the Neer impingement test,49 and the painful arc test.50 Pain and weakness51 were assessed
during the administration of the “shoulder impingement” special tests. Arthrogenic assessments included passive accessory motion testing of the glenohumeral joint in supine, \(^5\) unilateral posterior-to-anterior passive accessory mobility testing of the C2-C7 facet joints in prone, \(^5\) cervical lateral glide passive motion testing of C3-7 facet joints in supine, \(^5\) and central PAs over T1-T6 spinous processes. \(^5\)

Although the Hawkins-Kennedy and Empty Can tests were included as part of a comprehensive shoulder examination for all subjects,\(^46,49,55\) we did not use the results of these 2 tests to determine whether patients were included or excluded from the study. That is, the outcome on the Hawkins-Kennedy and Empty Can tests has not been shown to be predictive of success in patients with shoulder pain receiving spinal manipulation. Rather, we used a negative Neer impingement test as 1 of the 7 inclusion criteria because it has previously been found by Mintken et al\(^23\) to predict successful outcomes in individuals with shoulder pain receiving spinal manipulation.

Outcome Measures

The primary outcome measures were the perceived level of shoulder girdle pain as measured by the NPRS,\(^56\) and shoulder disability as captured with the SPADI.\(^57-59\) The global rating of change (GROC) was used as a secondary outcome measure.\(^60\)

The NPRS was used to capture the patient’s level of pain. Patients were asked to indicate the intensity of their current shoulder girdle pain using an 11-point scale, ranging from 0 (no pain) to 10 (worst pain imaginable).\(^56\) The MCID for the NPRS in a broad population of patients with various musculoskeletal conditions has been reported to be 1.74 points\(^61\); in addition, and according to Dworkin et al,\(^62\) raw score changes of 1 point or percentage changes of approximately 15% to 20% represent the MCID for the NPRS in subjects with chronic pain. More specifically, the NPRS exhibited a minimal detectable change of 2.5 points\(^63\) and an MCID between 1.1\(^63\) and 2.17\(^64\) points in patients with shoulder pain, which is consistent with the findings in heterogeneous groups of patients with musculoskeletal pain conditions.\(^61,62\)

The SPADI is a self-report questionnaire developed to assess the pain and disability associated with shoulder pathology in people with shoulder pain of musculoskeletal, neurogenic, or undetermined origin.\(^59\) The SPADI contains 13 items that assess 2 domains: a 5-item subscale that measures pain and an 8-item subscale that measures disability. The items of both domains are scored on a Likert scale ranging from 0 to 10, where 0 represents no pain/no difficulty and 10 represents worst pain imaginable/so difficult required help. Each subscale is summed and transformed to a percentage score out of 100, and then the mean is taken of the 2 subscales (both subscale percentage scores are weighted equally) to give a total SPADI score out of 100, with higher scores indicating greater impairment or disability. The SPADI has been found to possess excellent reliability, validity, and responsiveness.\(^59,65\) When the SPADI is used more than once on the same subject (ie, at initial consultation and again at discharge), the minimal detectable change has been reported to be 18 points.\(^66,67\)

The MCID for the SPADI has been found to be 10 points\(^65\); however, in a recent systematic review, Roy et al\(^68\) concluded that changes between 8 and 13 points in the SPADI score should be considered clinically meaningful. Michener and Leggin\(^69\) reported a high test-retest reliability and internal consistency for the SPADI.

In addition, at 48 hours, 4 days, 1 month, and 3 months, patients completed a 15-point GROC scale. The GROC was first described by Jaeschke et al\(^60\) and has been used in many studies\(^70-73\) to grade the subject’s own perception of overall functional change. The scale ranges from −7 (a very great deal worse) to 0 (about the same) and to +7 (a very great deal better).\(^60\) Intermittent descriptors of worsening or improving are assigned values from −1 to −6 and +1 to +6, respectively. The NPRS was the only outcome measure reassessed immediately postintervention; however, the SPADI and the NPRS were both assessed at baseline, 48 hours, 4 days, 1 month, and 3 months after the first HVLA thrust manipulation session.

Second/Third Ribs and Upper Thoracic HVLA Thrust Manipulation Techniques

All patients were treated for 1 session and then returned 48 hours later to complete outcome measurements and receive a second treatment session. The treatment program consisted of 3 components: (1) an HVLA thrust manipulation targeting the second and third costotransverse rib articulations on the first treatment session; (2) an upper thoracic HVLA thrust manipulation targeted bilaterally to the T2-T3 facet articulations on the second treatment session; and (3) advice to maintain usual activity within the limits of pain. Other interventions (eg, exercises, massage, advice about posture, and treatment directly to the glenohumeral joint or rotator cuff muscles) were considered deviations\(^10\) from the manipulative protocol and, therefore, were discouraged from being implemented. No further treatment was delivered by the manipulative physiotherapist after 48 hours. All follow-up assessments on day 4, 1 month, and 3 months were conducted onsite at the respective clinic. All 10 participants denied receiving other interventions during their respective 3-month follow-up period.

After the initial examination and at the first treatment session, subjects received a single HVLA thrust manipulation targeting the costotransverse articulation of the second rib and third ribs on the symptomatic side. For this technique,\(^74\) the patient’s arms were folded horizontally across their chest. Contact was made onto the second
Statistical Analysis

Data analysis was performed using SPSS 21.0 (IBM, Armonk, NY). Descriptive statistics, including frequency counts for categorical variables and measures of central tendency and dispersion for continuous variables, were calculated to summarize the data. A normal distribution of quantitative data for the 2 primary outcome measures (ie, NPRS for pain and SPADI for disability) was assessed using the Kolmogorov-Smirnov test; both outcomes were normally distributed (P > .05). A 1-way analysis of variance (ANOVA) for repeated measures, with a Greenhouse-Geisser epsilon correction, was used to compare the intragroup scores of each variable (1 for the NPRS data and 1 for the SPADI data) during postintervention assessments. Post hoc pairwise comparisons (paired t tests) were performed, examining the difference between baseline and each of the follow-up periods using the Bonferroni correction at an α level of .05. The statistical analysis was conducted at a 95% confidence level. All 10 participants completed outcomes through 3-month follow-up. To quantify the treatment magnitude, within-group effect sizes were calculated using Cohen’s d coefficient. An effect size of greater than 0.8 was considered large, close to 0.5 was considered moderate, and less than 0.2 was considered small.

RESULTS

Shoulder Girdle Pain (NPRS)

Using the Greenhouse-Geisser epsilon correction, a 1-way repeated-measures ANOVA revealed a significant (F = 63.439; P = .001) decrease in shoulder girdle pain (NPRS) after 2 sessions of HVLA thrust manipulation targeting the second and third ribs on the symptomatic side and the upper thoracic spine (T2-T3) bilaterally (Fig 3). Post hoc pairwise comparisons showed significant differences between the pretreatment pain scores and each of the 5 postintervention pain scores (P < .05); however, no significant differences in shoulder pain (NPRS) were found between immediately postmanipulation and 48 hours (P = .279), day 4 and 1 month (P = .591), and 1 month and 3 months (P = .081). Table 2 provides the mean and SDs for rest shoulder girdle pain intensity (NPRS) scores at all assessment periods between baseline and 3-month follow-up. Table 3 provides the preintervention and
postintervention scores for shoulder pain (NPRS) on each of the subjects at all time points.

A significant ($P = .001$) decrease, with large (ie, Cohen’s $d = 0.8$ or greater) within-group effect sizes were found between preintervention data and all 5 postintervention assessments in shoulder girdle pain (Cohen’s $d = 2.33$ [baseline to immediately posttreatment]; Cohen’s $d = 2.63$ [baseline to 48 hours]; Cohen’s $d = 4.07$ [baseline to day 4]; Cohen’s $d = 4.01$ [baseline to 1 month]; Cohen’s $d = 4.61$ [baseline to 3 months]) after 2 sessions of HVLA thrust manipulation targeting the upper thoracic spine (T2-T3) bilaterally and the second and third costotransverse articulations on the symptomatic side.

Shoulder Pain and Disability (SPADI)

Using the Greenhouse-Geisser epsilon correction, a 1-way repeated measures ANOVA found a significant ($F = 59.997; P = .001$) decrease in disability (SPADI score) after 2 sessions of HVLA thrust manipulation targeting the second and third ribs on the symptomatic side and the upper thoracic spine (T2-T3) bilaterally (Fig 4). Post hoc pairwise comparisons showed significant differences between the pretreatment disability scores and each of the 4 postintervention disability scores ($P < .05$); however, no significant differences in disability (SPADI) were found between day 4 and 1 month ($P = .474$), and 1 month and 3 months ($P = .084$). Table 2 provides the mean and SDs for shoulder disability (SPADI) scores at all assessment periods between baseline and 3-month follow-up. Table 4 provides the preintervention and postintervention scores for disability (SPADI) on each of the subjects at all time points.

A significant ($P = .001$) decrease, with large (ie, Cohen’s $d \geq 0.8$) within-group effect sizes (ie, the strength of association or treatment magnitude) were found between preintervention data and all 4 postintervention assessments in disability (Cohen’s $d = 2.68$ [baseline to 48 hours]; Cohen’s $d = 3.77$ [baseline to day 4]; Cohen’s $d = 3.80$ [baseline to 1 month]; Cohen’s $d = 3.91$ [baseline to 3 months]) after 2 sessions of HVLA thrust manipulation targeting the upper thoracic spine (T2-T3) bilaterally and the second and third costotransverse articulations on the symptomatic side.

Global Rating of Change

In 10 patients with shoulder pain secondary to second and third rib syndrome and after 1 to 2 sessions of HVLA thrust manipulation targeting the upper thoracic (T2-T3) spine bilaterally and the costotransverse articulations of ribs 2 and/or 3 on the symptomatic side, the mean (SD) GROC scores were +5.4 (1.1) at 48 hours, +6.2 (0.8) at day 4, +6.8 (0.4) at 1-month follow-up, and +6.8 (0.4) at 3-month follow-up, indicating “moderately better” and “a great deal better” outcomes in the immediate and short terms and “a very great deal better” outcome in the long term at 3-month follow-up. For all assessment periods, the mean and SD for posttreatment GROC scores can be found in Table 2.

DISCUSSION

In this prospective study of 10 patients with shoulder girdle pain secondary to second and third rib syndrome, a statistically significant and clinically meaningful reduction in resting shoulder pain (NPRS) and disability (SPADI) was demonstrated after 2 sessions of HVLA thrust manipulation directed to the upper thoracic zygapophyseal articulations...
bilaterally and the costotransverse articulations of the second and third ribs on the symptomatic side. Large (ie, Cohen’s $d ≥ 0.8$) within-group effect sizes were found between preintervention data and all postintervention assessments in resting shoulder pain (NPRS) and disability (SPADI), suggesting a strong clinical effect that was retained at the 3-month follow-up.

Our findings are in agreement with several studies that have previously investigated the effectiveness of HVLA thrust manipulation and/or nonthrust mobilization to the cervicothoracic junction, middle thoracic spine, upper thoracic spine, and/or upper ribs in patients with shoulder pain. In contrast, a recent randomized controlled trial found no statistically significant between-group difference in shoulder pain after thoracic HVLA thrust manipulation when compared with sham manipulation; however, unlike our study, the midthoracic (T3–T7) region was targeted rather than the upper thoracic spine and upper ribs, the longest outcome measure was taken just 3 minutes after the treatment, and the symptomatic portion of the sample only included individuals that met a specific diagnostic protocol for shoulder impingement syndrome—that is, not second and third rib syndrome.

Over a 12-week period and after a mean of 3.8 sessions of HVLA thrust manipulation and/or nonthrust mobilization to the cervical spine, upper thoracic spine, and adjacent ribs, Bergman et al. found 43% of the patients with shoulder pain assigned to the usual medical care combined with manipulative therapy group reported full recovery compared with 21% of the control group (ie, usual medical care alone). The study by Bergman et al. appears to be the first trial that evaluated the effectiveness of adding manipulative therapy to the cervicothoracic spine and upper ribs with usual medical care for the treatment of specifically shoulder girdle syndrome, not subacromial impingement or rotator cuff tendonitis. Compared with the study conducted by Winters et al. the trial by Bergman et al. and our prospective case series only included patients with shoulder symptoms thought to originate from cervicothoracic spine and upper rib dysfunction (ie, shoulder girdle syndrome, not synovial syndrome). Nevertheless, in the trial by Bergman et al. it remains unknown as to how many of the patients in the combined manipulative therapy and usual medical group actually received HVLA thrust manipulation vs nonthrust mobilization alone or a combination of both. In addition, no description of the actual HVLA thrust manipulation or nonthrust mobilization techniques or the target levels were provided in the trial by Bergman et al. Nevertheless, like the findings of our case series and as stated in the very last sentence of the article by Bergman et al., “For patients with shoulder symptoms in whom dysfunction of the cervicothoracic spine and adjacent ribs is found, referral to a manual therapist should be considered.”

This study found a 61.5% (6.5-2.5 points) reduction in rest shoulder girdle pain immediately after a single session of HVLA thrust manipulation to the upper thoracic spine and upper ribs. Similarly, in an observational study of 21 patients with shoulder pain and immediately after a single session of “HVLA thrust manipulation to the upper thoracic spine and/or ribs,” Strunce et al. reported a 51% (63.1-31.2 mm) reduction in resting pain intensity scores and a mean GROC score of +4.2. Similar to the +4.2 GROC score immediately after the intervention in the study of Strunce et al., our mean GROC score was +5.4 at 48-hour follow-up. However, unlike Strunce et al. that only measured preoutcomes and immediately postoutcomes, we tracked pain and disability up to 3 months out. In addition, unlike the present case series that targeted specifically ribs 2 and 3, it remains unknown if ribs 1, 2, 3, or lower were manipulated in the study by Strunce et al.

According to the findings of the trial by Winters et al. that compared physiotherapy (exercise, massage, and physical modalities twice per week), manipulation (up to 6 sessions of nonthrust mobilization and/or HVLA thrust manipulation to the cervical spine, upper thoracic spine, upper ribs, acromioclavicular joint, and glenohumeral joint), and corticosteroid injections (1-3 injection sessions over 3 weeks directed to the subacromial space, glenohumeral joint capsule, and/or acromioclavicular joint), manipulation was found to be superior ($P < .001$) to physiotherapy in the shoulder girdle group. More specifically, 5 weeks after randomization, 70% of the patients in the manipulation group considered that they were “cured” compared with 10% of the physiotherapy group. In contrast, for patients in the “synovial” group and 5 weeks after randomization, 75% of the patients in the injection group (average number of injections was 1.8) reported being cured compared with 20% in the physiotherapy group and 40% in the manipulation group. In agreement with the findings of the present case series, Winters et al. concluded, “For treating shoulder girdle disorders, manipulation seems to be the preferred treatment. For the synovial disorders, corticosteroid injection seems the best treatment.”

Table 2. Preintervention and Postintervention Scores for Shoulder Pain, Disability, and GROC

<table>
<thead>
<tr>
<th>Variable</th>
<th>Preintervention</th>
<th>Immediately Postintervention</th>
<th>48 h</th>
<th>Day 4</th>
<th>1 mo</th>
<th>3 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRS (0-10)</td>
<td>6.5 (1.8)</td>
<td>2.5 (1.6)</td>
<td>2.2 (1.4)</td>
<td>0.7 (0.8)</td>
<td>0.6 (0.9)</td>
<td>0.3 (0.5)</td>
</tr>
<tr>
<td>SPADI (0-100)</td>
<td>50.3 (17.9)</td>
<td>NA</td>
<td>11.1 (10.2)</td>
<td>1.9 (2.5)</td>
<td>1.5 (2.4)</td>
<td>0.5 (0.8)</td>
</tr>
<tr>
<td>GROC (-7 to +7)</td>
<td>NA</td>
<td>NA</td>
<td>+5.4 (1.1)</td>
<td>+6.2 (0.8)</td>
<td>+6.8 (0.4)</td>
<td>+6.8 (0.4)</td>
</tr>
</tbody>
</table>

Data are expressed as mean (SD). GROC, Global Rating of Change; -7 to +7, higher scores indicate greater overall improvement; NPRS, numeric pain rating scale; 0–10, lower scores indicate less pain; SPADI, Shoulder Pain and Disability Index; 0–100, lower scores indicate greater function.
Nevertheless, although Winters et al.24 were the first to publish a randomized clinical trial describing the positive effects of manipulation in treating shoulder pain, no descriptions of the actual cervical, thoracic, rib, acromioclavicular, or glenohumeral joint manipulation techniques were reported; furthermore, it was not disclosed how many of the subjects in the “manipulation group” received nonthrust mobilization vs HVLA thrust manipulation. In addition, no subjects in the trial by Winters et al.24 received HVLA thrust manipulation targeting exclusively the second and third costotransverse rib articulations and/or upper thoracic zygapophysyal articulations. Notably, although Winters et al.25 found short-term (ie, 11 weeks) effectiveness for corticosteroid injection therapy and cervical, thoracic, upper rib, acromioclavicular, and/or glenohumeral joint manipulation (or nonthrust joint mobilization) for shoulder pain, no significant differences were found between the 3 treatment groups (physiotherapy, manipulation, and injections) 2 to 3 years later in the long-term follow-up study.13 Therefore, although the significant reductions in pain and disability in our prospective case series were found to not decay between the 1- and 3-month interval, it remains unknown if these changes would still be present 1 to 2 years later.2,13

Although the mean duration of symptoms was 67 days, 1 of the 10 patients reported symptoms for just 1 day before seeking treatment from the physiotherapist. Rather than describing a specific traumatic event or insidious onset, this particular patient reported waking one morning with unilateral, posterior shoulder girdle pain that was sharp in nature and 8/10 on the NPRS. In addition, this patient also demonstrated. Nevertheless, we did not use the presence of trigger points as one of our inclusion or exclusion criterion.71,83-85 Moreover, Boyle25 was the first to publish a peer-reviewed article on second rib syndrome, and notably, he described the effect of rib manipulation on 2 separate patients: 1 acute (just a few days) and 1 chronic (18 months).

There are several studies that have found an interaction between myofascial trigger points and underlying joint dysfunction.86-90 More specifically, deactivation of myofascial trigger points after manipulative therapy or intraarticular injections to segmentally related facet joints,87,88,90 improved muscular feed forward activation timing or motor performance after HVLA thrust manipulation,71,91-94 and reductions in pain and disability after HVLA thrust manipulation in patients with myofascial trigger points and/or myofascial pain syndrome87,89 have previously been demonstrated. Nevertheless, we did not use the presence of trigger points as one of our inclusion or exclusion criterion because high-quality evidence suggests that manual examination for the identification of the specific location of the “trigger point” is not a valid95-97 or reliable95,98-100 process between examiners.

Biomechanical,90,101-106 spinal or segmental,94,107-111 and central descending inhibitory pain pathway112-115 models have all been suggested as possible explanations for the immediate hypoalgesic effects observed after HVLA thrust manipulation. Recently, the biomechanical effects of HVLA thrust manipulation have been under scientific scrutiny,109 and it is plausible that the clinical benefits found in our study are associated with a neurophysiological response involving temporal sensory summation at the dorsal horn of the spinal cord107; however, this proposed model is^

\begin{table}[h]
\centering
\caption{Preintervention and Postintervention Scores for Shoulder Pain} \label{tab:shoulder_pain}
\begin{tabular}{|l|c|c|c|c|c|}
\hline
Subject & Preintervention & Immediate & Postintervention & 48 h & Day 1 & 1 mo & 3 mo \\
\hline
Subject 1 & 5 & 2 & 2 & 1 & 0 & 0 & 0 \\
Subject 2 & 8 & 3 & 2 & 1 & 0 & 0 & 0 \\
Subject 3 & 7 & 4 & 4 & 2 & 2 & 1 \\
Subject 4 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
Subject 5 & 5 & 3 & 2 & 0 & 0 & 0 \\
Subject 6 & 8 & 2 & 3 & 0 & 0 & 0 \\
Subject 7 & 5 & 1 & 0 & 0 & 0 & 0 \\
Subject 8 & 8 & 4 & 3 & 0 & 0 & 0 \\
Subject 9 & 8 & 1 & 2 & 2 & 1 \\
Subject 10 & 8 & 5 & 4 & 1 & 2 & 1 \\
\hline
\end{tabular}
\end{table}

NPRS, numeric pain rating scale, 0-10; lower scores indicate less pain.\n
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{shoulder_pain_disability_index}
\caption{Mean shoulder pain and disability scores (SPADI 0-100) from baseline to 3 months. Mean and 95\% confidence interval for SPADI (0-100) scores from baseline to 3 months after an initial session of HVLA thrust manipulation directed to the costotransverse articulations of the second and third ribs on the symptomatic side and a second session of HVLA thrust manipulation targeting the upper thoracic spine (T2-3) bilaterally (P = .001).} \label{fig:shoulder_pain_disability_index}
\end{figure}
currently supported only by findings from transient, experimentally induced pain in healthy subjects \(^{107,108,110,116,117}\) and not in patients with shoulder pain. In summary, there is currently insufficient evidence to support a dominant role of any of these 3 hypoalgesic mechanisms.

Limitations

The sample size was small, and no comparison group was included. To make inferences on cause-and-effect relationships, future studies should use larger sample sizes and use a comparison group with random allocation to the experimental and control groups. An observational, descriptive case series was designed to explore whether manual therapy could be useful in patients with shoulder pain associated with second and third rib syndrome. We believe that this study may be the stimulus for future randomized controlled trials on this topic. In addition, although randomized controlled trials are considered to be the “gold standard” for experimental designs, observational, descriptive case series do have a place in clinical research and are appropriately ranked as level III evidence on the hierarchy. \(^{118,119}\) By definition, descriptive studies (eg, prospective case series) are observational and do not have a comparison group. \(^{118}\) The benefits of using a descriptive study are for trend analysis and hypothesis generation \(^{120,121}\); moreover, “descriptive studies are often a springboard into more rigorous studies with comparison groups.” \(^{122}\) Therefore, considering only 1 case report \(^{25}\) has been published on second rib syndrome, we believe that a grouping of 10 patients in a prospective, single-arm study is a progression of the evidence surrounding this topic. We do, however, realize that cause-and-effect inferences cannot be made from observational studies, \(^{122}\) and we have been very careful not to make such inferences. Second, we did not take any outcome measures beyond 3 months after the intervention; therefore, it is unknown if the changes in pain and disability that we found would still be present at 1 year after the intervention. Third, standardizing the treatment to just 2 specific manipulative procedures is not pragmatic and does not represent the common clinical practice of being able to alter the manipulation technique, target level, line of drive, or patient position during different treatment sessions based on clinical reasoning and response to the previous treatment session. Fourth, the results of our study cannot be generalized to individuals with shoulder pain secondary to synovial disorders of the subacromial cavity, glenohumeral joint, acromioclavicular joint, or coracoclavicular structures. We attempted to screen out synovial disorders by only including subjects with a negative Neer impingement test. Fifth, we did not use a validated diagnostic protocol to determine whether the patients in this study actually had second and third rib syndrome or some other shoulder disorder. Finally, another limitation of this study is that 3 different practitioners administered all of the upper thoracic and upper rib HVLA thrust manipulations; hence, it cannot be assumed that individual and subtle nuances to technique delivery adopted with time and experience would be identical in different practitioners administering the same procedure. Future research should determine whether second and third rib syndrome is a valid diagnostic subgroup of patients with shoulder pain and whether these patients respond any different to HVLA thrust manipulation or other interventions than those currently categorized as having a “shoulder girdle disorder.”

Conclusion

The results of the current study demonstrated that patients with shoulder pain secondary to second and third rib syndrome who received the combination of 2 sessions of HVLA thrust manipulation directed to the upper thoracic zygapophysial articulations bilaterally and the second and third rib costotransverse articulations on the symptomatic side experienced significant reductions in pain and disability and showed significant improvements in perceived level of recovery, at 48-hour, 1-month, and 3-month follow-ups.

Funding Sources and Potential Conflicts of Interest

No funding sources or conflicts of interest were reported for this study.

Contributorship Information

Concept development (provided idea for the research): J.D., F.M.d., G.G., F.M.i.

Design (planned the methods to generate the results): J.D., F.M.d., G.G., F.M.i.

Supervision (provided oversight, responsible for organization and implementation, writing of the manuscript): J.D., F.M.d.

Data collection/processing (responsible for experiments, patient management, organization, or reporting data): J.D., F.M.d., G.G., F.M.i.
Analysis/interpretation (responsible for statistical analysis, evaluation, and presentation of the results): J.D., F.M.d., T.P., C.F.d.I.P.

Literature search (performed the literature search): J.D., F.M.d., T.P.

Writing (responsible for writing a substantive part of the manuscript): J.D., F.M.d., G.G., F.M.i., T.P., C.F.d.I.P.

Critical review (revised manuscript for intellectual content, this does not relate to spelling and grammar checking): J.D., F.M.d., G.G., F.M.i., T.P., C.F.d.I.P.

Other (list other specific novel contributions): J.D., F.M.d., G.G., F.M.i., T.P., C.F.d.I.P.

Practical Applications

- Patients with shoulder pain secondary to second and third rib syndrome who received the combination of HVLA thrust manipulation targeted to the upper thoracic spine bilaterally and the second and third ribs on the symptomatic side experienced statistically significant reductions in pain and disability and showed significant improvements in perceived level of recovery.
- Large within-group effect sizes were found between preintervention data and all postintervention assessments in both shoulder pain and disability.
- At 3-month follow-up, a statistically significant and clinically meaningful decrease in shoulder pain and disability was observed; furthermore, the mean GROC score indicated “a very great deal better.”

REFERENCES

24. Winters JC, Sobel JS, Groenier KH, Arendzen HJ, Meyboom-de Jong B. Comparison of physiotherapy, manipulation, and corticosteroid injection for treating...
77. Lau HM, Wing Chiu TT, Lam TH. The effectiveness of thoracic manipulation on patients with chronic mechanical neck pain—a randomized controlled trial. Man Ther 2011;16:141-7.
90. Tsai CT, Hsieh LF, Kuan TS, Kao MJ, Hong CZ. Injection in the cervical facet joint for shoulder pain with myofascial trigger points in the upper trapezius muscle. Orthopedics 2009;32.
114. Skyba DA, Radhakrishnan R, Rohlwing JJ, Wright A, Sluka KA. Joint manipulation reduces hyperalgesia by activation of monoamine receptors but not opioid or GABA receptors in the spinal cord. Pain 2003;106:159-68.