A review of biomechanics of the central nervous system—part III: Spinal cord stresses from postural loads and their neurologic effects


      Objective: To review literature pertaining to neurologic disorders stemming from abnormal postures of the spine. Data Collection: A hand search of available reference texts and a computer search of literature from Index Medicus sources was performed, with special emphasis placed on spinal cord stresses and strains caused by various postural rotations and translations of the skull, thorax, and pelvis. Results: Spinal postures will often deform the neural elements within the spinal canal. Spinal postures can be broken down into four types of loading: axial, pure bending, torsion, and transverse, which cause normal and shear stresses and strains in the neural tissues and blood vessels. Prolonged stresses and strains in the neural elements cause a multitude of disease processes. Conclusion: Four types of postural loads create a variety of stresses and strains in the neural tissue, depending on the exact magnitude and direction of the forces. Transverse loading is the most complex load. The stresses and strains in the neural elements and vascular supply are directly related to the function of the sensory, motor, and autonomic nervous systems. The literature indicates that prolonged loading of the neural tissue may lead to a wide variety of degenerative disorders or symptoms. The most offensive postural loading of the central nervous system and related structures occurs in any procedure or position requiring spinal flexion. Thus flexion traction, rehabilitation positions, exercises, spinal manipulation, and surgical fusions in any position other than lordosis for the cervical and lumbar spines should be questioned. (J Manipulative Physiol Ther 1999;22:399–410)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Manipulative & Physiological Therapeutics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Harrison DE
        • Cailliet R
        • Harrison DD
        • Troyanovich SJ.
        A review of biomechanics of the central nervous system—part II: spinal cord strains from postural loads.
        J Manipulative Physiol Ther. 1999; 22: 322-332
        • Fukuyama S
        • Nakamura
        • Ikeda T
        • Takagi K.
        The effect of mechanical stress on hypertrophy of the lumbar ligamentum flavum.
        J Spinal Disord. 1995; 8: 126-130
        • Fukuyama S
        • Nakamura T
        • Takagi K.
        The effects of mechanical stress on the ligamentum flavum: an experimental study in the rabbit.
        Neuro-Orthopedics. 1995; 19: 61-67
        • Jones M
        • Pais M
        • Omiya B.
        Bony overgrowths and abnormal calcifications about the spine.
        Radiol Clin N Am. 1988; 26: 1213-1234
        • Zagra A
        • Lamartina C
        • Pace A
        • Balzarini E
        • Zerbi A
        • Scoles P
        • et al.
        Posterior spinal fusion in scoliosis: computer-assisted tomography and biomechanics of the fusion mass.
        Spine. 1988; 13: 155-161
        • Brickley-Parsons D
        • Glimcher MJ.
        Is the chemistry of collagen in intervertebral discs an expression of Wolff's law? a study of the human lumbar spine.
        Spine. 1983; 9: 148-163
        • Breig A.
        Adverse mechanical tension in the central nervous system: analysis of cause and effect—relief by functional neurosurgery.
        John Wiley and Sons, New York (NY)1978
        • McCormick P
        • Stein B.
        Functional anatomy of the spinal cord and related structures.
        Neurosurg Clin N Am. 1990; 1: 469-489
        • Lundborg G.
        Intraneural microcirculation.
        Orthop Clin N Am. 1988; 19: 1-12
        • Keim H
        • Hilal S.
        Spinal angiography in scoliosis patients.
        J Bone Joint Surg. 1971; 53A: 904-912
        • Urayama K.
        Origin of lumbar cerebrospinal fluid pulse wave.
        Spine. 1994; 19: 441-445
        • Parke W.
        Correlative anatomy of cervical spondylotic myelopathy.
        Spine. 1988; 13: 831-837
        • Breig A
        • Troup J.
        Biomechanical considerations in the straight leg-raising test: cadaveric and clinical studies of the effects of medial hip rotation.
        Spine. 1979; 4: 242-250
        • Cusick J
        • Myklebust J
        • Zyvoloski M
        • Sances A
        • Houterman C
        • Larson S.
        Effects of vertebral column distraction in the monkey.
        J Neurosurg. 1982; 57: 651-659
        • Dolan E
        • Transfeldt E
        • Tator C
        • Simmons E
        • Hughes K.
        The effect of spinal distraction on regional blood flow in cats.
        J Neurosurg. 1980; 53: 756-764
        • Konno S
        • Goto S
        • Murakami M
        • Mochizuki M
        • Motegi H
        • Moriya H.
        Juvenile amyotrophy of the distal upper extremity: pathological findings of the dura mater and surgical management.
        Spine. 1997; 22: 486-492
        • Baker P
        • Ladds M
        • Rubinson K.
        Measurement of the flow properties of isolated axoplasm in a defined chemical environment.
        J Physiology. 1977; 269: 10-11
        • Naito M
        • Owen J
        • Bridwell K
        • Sugioka Y.
        Effects of distraction on physiologic integrity of the spinal cord, spinal cord blood flow, and clinical status.
        Spine. 1992; 17: 1154-1158
        • Fujita Y
        • Yamamoto H.
        An experimental study on spinal cord traction effect.
        Spine. 1989; 14: 698-705
        • Wing P
        • Tsang I
        • Susak L
        • Gagnon F
        • Gagnon R
        • Potts J.
        Back pain and spinal changes in microgravity.
        Orthop Clin N Am. 1991; 22: 255-262
        • Yamada S
        • Zinke D
        • Sanders D.
        Pathophysiology of tethered cord syndrome.
        J Neurosurg. 1981; 54: 494-503
        • Yamada S
        • Iacono R
        • Andrade T
        • Mandybur G
        • Yamada B.
        Pathophysiology of tethered cord syndrome.
        Neurosurg Clin N Am. 1995; 6: 311-323
        • Hiraizumi Y
        • Transfeldt EE
        • Kawahara N
        • Yamada H.
        Differences in sensitivity between magnetic motor-evoked potentials and somatosensory-evoked potentials in experimental spinal cord lesions.
        Spine. 1996; 21: 2190-2196
        • White A
        • Panjabi M.
        Clinical biomechanics of the spine.
        2nd ed. JB Lippincott, Philadelphia (PA)1990
        • Jarzem P
        • Quance D
        • Doyle D
        • Begin L
        • Kostuik J.
        Spinal cord tissue pressure during spinal cord distraction in dogs.
        Spine. 1992; 17: S227-S234
        • Tachibana S
        • Kitahara Y
        • Lida H
        • Yada K.
        Spinal cord intramedullary pressure: a possible factor in syrinx growth.
        Spine. 1994; 19: 2174-2179
        • Kitahara Y
        • Lida H
        • Tachibana S.
        Effect of spinal cord stretching due to head flexion on intramedullary pressure.
        Neurol Med Chir (Tokyo). 1995; 35: 285-288
        • Lida H
        • Tachibana S.
        Spinal cord intramedullary pressure: Direct cord traction test.
        Neurol Med Chir (Tokyo). 1995; 35: 75-77
        • Breig A
        • Renard M
        • Stefanko S
        • Renard C.
        Anatomic bases of medical and surgical techniques. Healing of the severed spinal cord by biomechanical relaxation and surgical immobilization.
        Anat Clin. 1982; 4: 167-181
        • Francel P
        • Long B
        • Malik J
        • Tribble C
        • Jane J
        • Kron I.
        Limiting ischemic spinal cord injury using a free radical scavenger 21-aminosteroid and/or cerebrospinal fluid drainage.
        J Neurosurg. 1993; 79: 742-751
        • Kwan M
        • Wall E
        • Massie J
        • Garfin S.
        Strain, stress and stretch of peripheral nerve: rabbit experiments in vitro and in vivo.
        Acta Orthop Scand. 1992; 63: 267-272
        • Kazama S
        • Yoshihiko M
        • Maruyama S
        • Ishihara A.
        Effect of altering cerebrospinal fluid pressure on spinal cord blood flow.
        Ann Thorac Surg. 1994; 58: 112-115
        • Lundborg G
        • Rydevik B.
        Effects of stretching the tibial nerve of the rabbit: a preliminary study of the intraneural circulation and the barrier function of the perineurium.
        J Bone Joint Surg. 1973; 55-B: 390-401
        • Peterson M
        • Nelson L
        • McManus A
        • Jackson R.
        The effect of operative position on lumbar lordosis: a radiographic study of patients under anesthesia in the prone and 90–90 positions.
        Spine. 1995; 20: 1419-1424
        • Lew P
        • Morrow C
        • Lew A.
        The effect of neck and leg flexion and their sequence on the lumbar spinal cord.
        Spine. 1994; 19: 2421-2425
        • Beer FP
        • Johnston ER.
        Mechanics of materials.
        2nd edition. McGraw-Hill, New York (NY)1992
        • Panjabi M
        • White A.
        Biomechanics of nonacute cervical spinal cord trauma.
        Spine. 1988; 13: 838-842
        • Matsunaga S
        • Sakou T
        • Sunahara N
        • Oonishi T
        • Maeda S
        • Nakanisi K.
        Biomechanical analysis of buckling alignment of the cervical spine.
        Spine. 1997; 22: 765-771
        • Harrison DD
        • Janik TJ
        • Troyanovich SJ
        • Holland B.
        Comparisons of lordotic cervical spine curvatures to a theoretical ideal model of the static sagittal cervical spine.
        Spine. 1996; 21: 667-675
        • Breig A.
        Biomechanics of the central nervous system.
        Almqvist & Wiksell, Stockholm1960
        • Reid J.
        Effects of flexion-extension movement of the head and spine upon the spinal cord and nerve roots.
        J Neurol Neurosurg Psychiatr. 1960; 23: 214-221
        • Ruch WJ.
        Atlas of common subluxations of the human spine and pelvis.
        Boca Raton: CRC Press, 1997
        • Rossitti S.
        Biomechanics of the pons-cord tract and its enveloping structures: an overview.
        Acta Neurochirugica. 1993; 124: 144-152
        • Okumura H
        • Homma T.
        Juvenile compression myelopathy in the cervical spine.
        Spine. 1994; 19: 72-76
        • Penning L
        • Van Der Zwaag P.
        Biomechanical aspects of spondylotic myelopathy.
        Acta Radiologica. 1966; 5: 1090-1103
        • Harrison DE.
        Juvenile amyotrophy of the distal upper extremity.
        Spine. 1997; 22 ([letter to the editor]): 2581-2583
        • Raynor RB
        • Koplik B.
        Cervical cord trauma: the relationship between clinical syndromes and force of injury.
        Spine. 1985; 10: 193-197
        • Breig A
        • Turnbull I
        • Hassler O.
        Effects of mechanical stresses on the spinal cord in cervical spondylosis: a study on fresh cadaver material.
        J Neurosurg. 1966; 25: 45-56
        • Tencer AF
        • Allen BL
        • Ferguson RL.
        A biomechanical study of thoracolumbar spine fractures with bone in the canal—part III: mechanical properties of the dura and its tethering ligaments.
        Spine. 1985; 10: 741-747
        • Tencer AF
        • Allen BL
        • Ferguson RL.
        A biomechanical study of thoracolumbar spinal fractures with bone in the canal—part I: the effect of laminectomy.
        Spine. 1985; 10: 580-584
        • Tencer AF
        • Ferguson RL
        • Allen BL.
        A biomechanical study of thoracolumbar spinal fractures with bone in the canal—part II: the effect of flexion angulation, distraction, and shortening of the motion segment.
        Spine. 1985; 10: 586-589
        • Breig A
        • Marions O.
        Biomechanics of the lumbosacral nerve roots.
        Acta Radiol. 1963; 1: 1141-1160
        • Schnebel BE
        • Watkins RG
        • Dillin W.
        The role of spinal flexion and extension in changing nerve root compression in disc herniations.
        Spine. 1989; 14: 835-837
        • Williams MM
        • Hawley JA
        • McKenzie RA
        • Wijmen PM.
        A comparison of the effects of two sitting postures on back and referred pain.
        Spine. 1991; 16: 1185-1191
        • Donelson R
        • Grant W
        • Kamps C
        • Medcalf R.
        Pain response to sagittal end-range spinal motion: a prospective, randomized, multicentered trial.
        Spine. 1991; 16: S206-S212
        • Ono K
        • Ota H
        • Tada K
        • Yamamoto T.
        Cervical myelopathy secondary to multiple spondylotic protrusions: a clinicopathologic study.
        Spine. 1977; 2: 109-125
        • Shinomiya K
        • Sato T
        • Spengler D
        • Dawson J.
        Isolated muscle atrophy of the distal upper extremity in cervical spinal cord compressive disorders.
        J Spinal Disord. 1995; 8: 311-316
        • Shinomiya K
        • Dawson J
        • Spengler DM
        • Konrad P
        • Blumenkopf B.
        An analysis of the posterior epidural ligament role on the cervical spinal cord.
        Spine. 1996; 21: 2081-2088
        • Olmarker K
        • Rydevik B
        • Holm S
        • Bagge U.
        Effects of experimental graded compression on blood flow in spinal nerve roots: a vital microscopic study on the porcine cauda equina.
        J Orthop Res. 1989; 7: 817-823
        • Olmarker K
        • Holm S
        • Rydevik B
        • Bagge U.
        Restoration of intrinsic blood flow during gradual decompression of the porcine cauda equina: a vital microscopic study.
        Neuro-Orthopedics. 1991; 10: 83-87
        • Al-Mefty O
        • Harkey HL
        • Marawi I
        • et al.
        Experimental chronic compressive cervical myelopathy.
        J Neurosurg. 1993; 79: 550-561
        • Wilberger J
        • Pang D.
        Syndrome of the incidental herniated lumbar disc.
        J Neurosurg. 1983; 59: 137-141
        • Crockard HA
        • Heilman AE
        • Stevens JM.
        Progressive myelopathy secondary to odontoid fractures: clinical, radiological, and surgical features.
        J Neurosurg. 1993; 78: 579-586
        • Smith KA
        • Rekate HL.
        Delayed postoperative tethering of the cervical spinal cord.
        J Neurosurg. 1994; 81: 196-201
        • O'Brien M
        • Sutterlin C.
        Occipitocervical biomechanics: clinical and biomechanical implications for posterior occipitocervical stabilization and fusion.
        Spine: State Art Rev. 1996; 10: 281-310
        • Burgerman R
        • Rigamonti D
        • Randle M
        • Fishman P
        • Panitch HS
        • Johnson KP.
        The association of cervical spondylosis and multiple sclerosis.
        Surg Neurol. 1992; 38: 265-270
        • Breig A
        • Troup JDG.
        Focal intramedullary tension in patients with cord lesion and its surgical relief by spinal cord relaxation.
        Lancet. 1984; 31: 739-740
        • Breig A.
        Skull traction and cervical cord injury: a new approach to improved rehabilitation.
        Springer-Verlag, New York1989
        • Johnston CE
        • Birch JG
        • Daniels JL.
        Cervical kyphosis in patients who have larsen syndrome.
        J Bone Joint Surg. 1996; 78-A: 538-545
        • Katsuura A
        • Hukuda S
        • Imanaka T
        • Miyamoto K
        • Kanemoto M.
        Anterior cervical plate used in degenerative disease can maintain cervical lordosis.
        J Spinal Disord. 1996; 9: 470-476
        • Goto S
        • Kita T.
        Long-term follow-up evaluation of surgery for ossification of the posterior longitudinal ligament.
        Spine. 1995; 20: 2247-2256
        • Young W.
        Spinal cord regeneration.
        Science. 1996; 273: 451
        • Chen DY.
        Effect of movement of cervical spine on compressed spinal cord-meningeal complex.
        Chung-Hau Wai Ko Tsa Chih Chinese J Surg. 1993; 31: 460-464
        • Barnes MP
        • Saunders M.
        The effect of cervical mobility on the natural history of cervical spondylotic myelopathy.
        J Neurol Neurosurg Psychiatry. 1984; 47: 17-20
        • Hirabayashi K
        • Satomi K.
        Operative procedure and results of expansive open-door laminoplasty.
        Spine. 1988; 13: 870-876
        • Hirabayashi K
        • Watanabe K
        • Wakano K
        • Suzuki N
        • Satomi K
        • Ishii Y.
        Expansive open-door laminoplasty for cervical spinal stenotic myelopathy.
        Spine. 1983; 8: 693-699
        • Ishida Y
        • Suzuki K
        • Ohmori K
        • Kikata Y
        • Hattori Y.
        Critical analysis of extensive cervical laminectomy.
        Neurosurgery. 1989; 24: 215-222
        • O'Brien M
        • Petersen D
        • Casey A.
        A novel technique for laminoplasty augmentation of spinal canal area using titanium miniplate stabilization.
        Spine. 1996; 21: 474-484
        • Harrison DD
        • Janik TJ
        • Troyanovich SJ
        • Harrison DE
        • Colloca CJ.
        Evaluation of the assumptions used to derive an ideal normal cervical spine model.
        J Manipulative Physiol Ther. 1997; 20: 202-213
        • Harrison DD
        • Janik TJ.
        Clinical validation of an ideal normal static cervical spine model.
        in: Computational medicine, public health, and biotechnology. Part 2. World Scientific Publishing, Austin (TX)1995: 1047-1055
        • Janik TJ
        • Harrison DD.
        Prediction of 2-D static normal position of the cervical spine from mathematical modeling.
        in: Computational medicine, public health, and biotechnology. Part 2. World Scientific Publishing, Austin (TX)1995: 1035-1046
        • Troyanovich SJ
        • Cailliet R
        • Janik TJ
        • Harrison DD
        • Harrison DE.
        Radiographic mensuration characteristics of the sagittal lumbar spine from a normal population with a method to synthesize prior studies of lordosis.
        J Spinal Disord. 1997; 10: 380-386
        • Janik TJ
        • Harrison DD
        • Cailliet R
        • Troyanovich TJ
        • Harrison DE.
        Can the sagittal lumbar curvature be closely approximated by an ellipse?.
        J Orthop Res. 1998; 16: 766-770
        • Harrison DD
        • Cailliet R
        • Janik TJ
        • Troyanovich TJ
        • Harrison DE.
        Elliptical modeling of the sagittal lumbar lordosis and segmental rotation angles as a method to discriminate between normal and low back pain subjects.
        J Spinal Disord. 1998; 11: 430-439